The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria
Sheng-Da Zhang
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Search for more papers by this authorWei-Jia Zhang
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
Search for more papers by this authorZoe Rouy
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, Evry, F-91057 France
Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8030, 2 rue Gaston Crémieux, Evry, F-91057 France
UEVE, Université d'Evry, Boulevard François Mitterrand, Evry, F-91025 France
Search for more papers by this authorFrançois Alberto
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Search for more papers by this authorClaire-Lise Santini
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Search for more papers by this authorSophie Mangenot
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, 2 rue Gaston Crémieux, Evry cedex, CP 5706 – 91057 France
Search for more papers by this authorSéverine Gagnot
Aix Marseille Univ, CNRS, LCB, Marseille, France
Search for more papers by this authorNadège Philippe
Aix Marseille Univ, CNRS, LCB, Marseille, France
Search for more papers by this authorNathalie Pradel
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Aix Marseille Univ, Univ Toulon, CNRS, IRD, Marseille, France
Search for more papers by this authorSébastien Tempel
Aix Marseille Univ, CNRS, LCB, Marseille, France
Search for more papers by this authorYing Li
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
Search for more papers by this authorClaudine Médigue
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, Evry, F-91057 France
Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8030, 2 rue Gaston Crémieux, Evry, F-91057 France
UEVE, Université d'Evry, Boulevard François Mitterrand, Evry, F-91025 France
Search for more papers by this authorBernard Henrissat
Aix Marseille Univ, CNRS, AFMB, Marseille, France
Search for more papers by this authorPedro M. Coutinho
Aix Marseille Univ, CNRS, AFMB, Marseille, France
Search for more papers by this authorValérie Barbe
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, 2 rue Gaston Crémieux, Evry cedex, CP 5706 – 91057 France
Search for more papers by this authorCorresponding Author
Emmanuel Talla
Aix Marseille Univ, CNRS, LCB, Marseille, France
For correspondence. E-mail [email protected][email protected]; Tel. +33-4-9116 4157; Fax +33-4-91718914.Search for more papers by this authorCorresponding Author
Long-Fei Wu
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
For correspondence. E-mail [email protected][email protected]; Tel. +33-4-9116 4157; Fax +33-4-91718914.Search for more papers by this authorSheng-Da Zhang
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Search for more papers by this authorWei-Jia Zhang
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
Search for more papers by this authorZoe Rouy
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, Evry, F-91057 France
Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8030, 2 rue Gaston Crémieux, Evry, F-91057 France
UEVE, Université d'Evry, Boulevard François Mitterrand, Evry, F-91025 France
Search for more papers by this authorFrançois Alberto
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Search for more papers by this authorClaire-Lise Santini
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Search for more papers by this authorSophie Mangenot
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, 2 rue Gaston Crémieux, Evry cedex, CP 5706 – 91057 France
Search for more papers by this authorSéverine Gagnot
Aix Marseille Univ, CNRS, LCB, Marseille, France
Search for more papers by this authorNadège Philippe
Aix Marseille Univ, CNRS, LCB, Marseille, France
Search for more papers by this authorNathalie Pradel
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
Aix Marseille Univ, Univ Toulon, CNRS, IRD, Marseille, France
Search for more papers by this authorSébastien Tempel
Aix Marseille Univ, CNRS, LCB, Marseille, France
Search for more papers by this authorYing Li
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
Search for more papers by this authorClaudine Médigue
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, Evry, F-91057 France
Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8030, 2 rue Gaston Crémieux, Evry, F-91057 France
UEVE, Université d'Evry, Boulevard François Mitterrand, Evry, F-91025 France
Search for more papers by this authorBernard Henrissat
Aix Marseille Univ, CNRS, AFMB, Marseille, France
Search for more papers by this authorPedro M. Coutinho
Aix Marseille Univ, CNRS, AFMB, Marseille, France
Search for more papers by this authorValérie Barbe
Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope, Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, 2 rue Gaston Crémieux, Evry cedex, CP 5706 – 91057 France
Search for more papers by this authorCorresponding Author
Emmanuel Talla
Aix Marseille Univ, CNRS, LCB, Marseille, France
For correspondence. E-mail [email protected][email protected]; Tel. +33-4-9116 4157; Fax +33-4-91718914.Search for more papers by this authorCorresponding Author
Long-Fei Wu
Aix Marseille Univ, CNRS, LCB, Marseille, France
Centre National de la Recherche Scientifique, Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL), Marseille cedex 20, F-13402 France
For correspondence. E-mail [email protected][email protected]; Tel. +33-4-9116 4157; Fax +33-4-91718914.Search for more papers by this authorSummary
Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.
Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher's web-site:
Filename | Description |
---|---|
emi13637-sup-0001-suppinfo1.docx4.6 MB |
Table S1. The general features of the MO-1 strain and other sequenced MTB strains. Table S2. The calculated parameters for species/genus boundary Table S3. The distribution of the COG functional classes in the MO-1 chromosome. Table S4. Putative genomic islands (GI) in the MO-1 strain. Table S5. List of core orthologous gene families of MTB. Table S6. The taxonomic affiliations from top-scoring BLAST against nr database for MO-1 and MC-1 minimal gene sets. Table S7. The taxonomic affiliations of from top-scoring BLAST hits of MTB core gene sets. Table S8. The taxonomic affiliations from top-scoring BLAST hits of MTB whole genomes. Table S9. The taxonomic affiliations from top-scoring BLAST versus a proteobacterial genomes for selected bacterial species. Table S10. The distance matrix based on the enzyme network similarity. Table S11. The list of 20 Gram-positive bacteria species used for PCA. Table S12. The list of 93 archaea species used for PCA Table S13. The list of 26 hyperthermophilic bacteria species used for PCA. Table S14. The list of 12 species from Nitrospira phylum used for PCA. Table S15. The list of 14 Gammaproteobacteria species used for PCA. Table S16. Spacers of the CRISPR locus in M. massalia MO-1 and M. marinus MC-1 Fig. S1. The organization of Magnetosome Island (MAI) of marine magneto-ovoid strain MO-1 and other selected MTB. MC-1, Magnetococcus marinus MC-1; AMB-1, Magnetospirillum magneticum AMB-1; QH-2, marine Magnetospira sp. QH-2; MSR-1, Magnetospirillum gryphiswaldense MSR-1; MV-1, Magnetovibrio blakemorei MV-1; RS-1, Desulfovibrio magneticus RS-1. Different coloured arrows indicate characteristic functions or features of the encoding genes. Grey highlight indicates the syntenies of mam gene clusters among the MAIs. Fig. S2. Unrooted trees based on reaction (A) and connection (B) data. The reaction and connection data are used to calculate the distance matrix and generate the trees shown in (A) and (B) with Fitch algorithm. MO-1: the magneto-ovoid strain MO-1; MC-1: M. marinus MC-1; QH-2: Magnetospira sp. QH-2; AMB-1 M. magneticum strain AMB-1; MSR-1: M. gryphiswaldense strain MSR-1; RS-1: D. magneticus RS-1. E. coli, R. rubrum, and D. vulgaris are also included in the analysis. Fig. S4. Similarity of anoxic network enzyme distribution in sequenced MTB strains, aquatic hyperthermophilic bacteria and Nitrospria species without Candidatus Magnetobacterium casensis (A) or with Candidatus Magnetobacterium casensis (B), The enzyme presence/absence matrix was fitted to two dimensions by principle component analysis (PCA). The MTB strains and close related none-MTB species are indicated with colours: purple: Magnetospira sp. QH-2, M. magneticum strain AMB-1, M. gryphiswaldense MSR-1 and R. rubrum; orange: the magneto-ovoid strain MO-1 and M. marinus MC-1; green: D. magneticus RS-1 and D. Vulgaris. The Nitrospira species were indicated by arrows. Fig. S5. A schematic model for DNA uptake machine in MO-1. Fig. S6. The possible anaerobic origin of magnetosome formation. The timetree showed the divergence of prokaryotes. The occurrence of the MO-1 strain and M. marinus MC-1 ancestor was indicated by red angles, while the green angles indicted the possible occurrence of Magnetospira sp. QH-2 ancestor. The pink lines displayed the great oxidation event during the evolution of earth. And the time scale is in billion years ago (adapted from reference Battistuzzi and Hedges, 2009). Fig. S7. The glycolysis pathway in sequenced MTB strains, which indicated the metabolic versatility in carbon metabolism. The red crosses indicate that genes related to these reactions are absent in magneto-ovoid strain MO-1 and M. marinus MC-1. Fig. S8. The tricarboxylic acid (TCA) cycle in sequenced MTB strains. Fig. S9. The reverse tricarboxylic acid (rTCA) cycle in sequenced MTB strains. The green cross indicates that genes related to these reactions are absent in Magnetospirillum strains and Magnetospira sp. QH-2. Fig. S10. Metabolic versatility of analysed MTB species in nitrogen metabolism. MO-1: the magneto-ovoid strain MO-1; MC-1: M. marinus MC-1; QH-2: Magnetospira sp. QH-2; AMB-1 M. magneticum strain AMB-1; MSR-1: M. gryphiswaldense strain MSR-1; RS-1: D. magneticus RS-1. Fig. S11. The cobalamin (CBL) biosynthesis pathway (adapted from Reference (Rodionov et al., 2003)). Red and blue plain circles indicate genes that are present in the MO-1 strain and M. marinus MC-1 respectively. Fig. S12. The cobalamin (CBL) biosynthesis pathway in Magnetospira sp. QH-2 (blue), M. magneticum AMB-1 (green) and M. gryphiswaldense MSR-1 (purple) respectively. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Ariskina, E. (2003) Magnetic inclusions in prokaryotic cells. Microbiology 72: 251–258.
- Auch, A.F., von Jan, M., Klenk, H.P., and Goker, M. (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genom Sci 2: 117–134.
- Bazylinski, D.A., and Frankel, R.B. (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2: 217–230.
-
Bazylinski, D.A., and
Williams, T.J. (2007) Ecophysiology of magnetotactic bacteria. In Magnetoreception and Magnetosomes in Bacteria. D. Schüler (ed). Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 37–75.
10.1007/7171_038 Google Scholar
- Bazylinski, D.A., Williams, T.J., Lefèvre, C.T., Berg, R.J., Zhang, C.L., Bowser, S.S., et al. (2013) Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol 63: 801–808.
- Caroquintero, A., and Konstantinidis, K.T. (2015) Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J 9: 958–967.
- Chen, I., and Dubnau, D. (2004) DNA uptake during bacterial transformation. Nat Rev Micro 2: 241–249.
- De Araujo, F., Pires, M., Frankel, R.B., and Bicudo, C. (1986) Magnetite and magnetotaxis in algae. Biophys J 50: 375–378.
- Deveau, H., Garneau, J.E., and Moineau, S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64: 475–493.
- Doolittle, W.F. (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2129.
- Esser, C., Martin, W., and Dagan, T. (2007) The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 3: 180–184.
- Everitt, B.S., and Hothorn, T. (2011) An Introduction to Applied Multivariate Analysis with R. New York: Springer.
- Faivre, D., and Schu¨Ler, D. (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108: 4875–4898.
- Forst, C., Flamm, C., Hofacker, I., and Stadler, P. (2006) Algebraic comparison of metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioinform 7: 67.
- Garciavallve, S., Romeu, A., and Palau, J. (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10: 1719–1725.
- Garciavallve, S., Guzman, E., Montero, M.A., and Romeu, A. (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31: 187–189.
- Gil, R., Silva, F.J., Peretó, J., and Moya, A. (2004) Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 68: 518–537.
- Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202.
- Heyen, U., and Schüler, D. (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microb Biotechnol 61: 536–544.
- Ji, B., Zhang, S.D., Arnoux, P., Rouy, Z., Alberto, F., Philippe, N., et al. (2014) Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ Microbiol 16: 525–544.
- Jogler, C., Kube, M., Schübbe, S., Ullrich, S., Teeling, H., Bazylinski, D.A., et al. (2009) Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 11: 1267–1277.
- Jogler, C., Niebler, M., Lin, W., Kube, M., Wanner, G., Kolinko, S., et al. (2010) Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum'via ultrastructural, geochemical, ecological and metagenomic methods. Environ Microbiol 12: 2466–2478.
- Jogler, C., Wanner, G., Kolinko, S., Niebler, M., Amann, R., Petersen, N., et al. (2011) Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc Natl Acad Sci 108: 1134–1139.
- Kanehisa, M., and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30.
- Kolinko, I., Lohsse, A., Borg, S., Raschdorf, O., Jogler, C., Tu, Q., et al. (2014) Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 9: 193–197.
- Kolinko, S., Richter, M., Glöckner, F.O., Brachmann, A., and Schüler, D. (2016) Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 18: 21–37.
- Lefèvre, C.T., Song, T., Yonnet, J.P., and Wu, L.F. (2009a) Characterization of bacterial magnetotactic behaviors by using a magnetospectrophotometry assay. Appl Environ Microbiol 75: 3835–3841.
- Lefèvre, C.T., Bernadac, A., Yu-Zhang, K., Pradel, N., and Wu, L.F. (2009b) Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol 11: 1646–1657.
- Lefevre, C.T., Abreu, F., Schmidt, M.L., Lins, U., Frankel, R.B., Hedlund, B.P., and Bazylinski, D.A. (2010) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76: 3740–3743.
- Lefèvre, C.T., Viloria, N., Schmidt, M.L., Pósfai, M., Frankel, R.B., and Bazylinski, D.A. (2011) Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6: 440–450.
- Lerat, E., Daubin, V., Ochman, H., and Moran, N.A. (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3: e130.
- Li, L., Stoeckert, C.J., and Roos, D.S. (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189.
- Lin, W., and Pan, Y. (2015) A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ Microbiol Rep 7: 237–242.
- Lin, W., Li, J., and Pan, Y. (2012) Newly isolated but uncultivated magnetotactic bacterium of the phylum Nitrospirae from Beijing, China. Appl Environ Microbiol 78: 668–675.
- Lin, W., Deng, A., Wang, Z., Li, Y., Wen, T., Wu, L.F., et al. (2014) Genomic insights into the uncultured genus/`Candidatus Magnetobacterium/' in the phylum Nitrospirae. Isme J 8: 2463–2477.
- Makarova, K.S., Ponomarev, V.A., and Koonin, E.V. (2001) Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol 2: e0033.
- Matsunaga, T., Okamura, Y., Fukuda, Y., Wahyudi, A.T., Murase, Y., and Takeyama, H. (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12: 157–166.
- Mithani, A., Hein, J., and Preston, G.M. (2011) Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas. Mol Biol Evol 28: 483–499.
- Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: W182–W185.
- Murat, D., Quinlan, A., Vali, H., and Komeili, A. (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci U S A 107: 5593–5598.
- Nakazawa, H., Arakaki, A., Narita-Yamada, S., Yashiro, I., Jinno, K., Aoki, N., et al. (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19: 1801–1808.
- Nash, C.Z. (2008) Mechanisms and evolution of magnetotactic bacteria. Ph.D. thesis California Institute of Technology, Pasadena, California, USA (Defended May 22, 2008).
- Raschdorf, O., Forstner, Y., Kolinko, I., Uebe, R., Plitzko, J.M., and Schüler, D. (2016) Genetic and ultrastructural analysis reveals the key players and initial steps of bacterial magnetosome membrane biogenesis. PLoS Genet 12: e1006101.
- Raymond, J., and Segrè, D. (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311: 1764–1767.
- Richter, M., and Rosselló-Móra, R. (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106: 19126–19131.
- Richter, M., Kube, M., Bazylinski, D.A., Lombardot, T., Glöckner, F.O., Reinhardt, R., and Schüler, D. (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol 189: 4899–4910.
- Rodriguez-R, L.M., and Konstantinidis, K.T. (2014) Bypassing cultivation to identify bacterial species. Microbe 9: 111–118.
- Ruan, J., Kato, T., Santini, C.L., Miyata, T., Kawamoto, A., Zhang, W.J., et al. (2012) Architecture of a flagellar apparatus in the fast-swimming magnetotactic bacterium MO-1. Proc Natl Acad Sci U S A 109: 20643–20648.
- Schubbe, S., Kube, M., Scheffel, A., Wawer, C., Heyen, U., Meyerdierks, A., et al. (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185: 5779–5790.
- Schübbe, S., Williams, T.J., Xie, G., Kiss, H.E., Brettin, T.S., Martinez, D., et al. (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75: 4835–4852.
- Tettelin, H., Riley, D., Cattuto, C., and Medini, D. (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11: 472–477.
- Thompson, C.C., Chimetto, L., Edwards, R.A., Swings, J., Stackebrandt, E., and Thompson, F.L. (2013) Microbial genomic taxonomy. BMC Genom 14: 913.
- Ullrich, S., Kube, M., Schubbe, S., Reinhardt, R., and Schüler, D. (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187: 7176–7184.
- Vainshtein, M., Suzina, N., Kudryashova, E., and Ariskina, E. (2002) New magnet-sensitive structures in bacterial and archaeal cells. Biol Cell 94: 29–35.
- Vallenet, D., Engelen, S., Mornico, D., Cruveiller, S., Fleury, L., Lajus, A., et al. (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database 2009: bap021.
- Vezzi, A., Campanaro, S., D'angelo, M., Simonato, F., Vitulo, N., Lauro, F.M., et al. (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307: 1459–1461.
- Woese, C.R., and Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74: 5088–5090.
- Yutin, N., Puigbò, P., Koonin, E.V., and Wolf, Y.I. (2012) Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7: e36972.
- Zhang, W.J., Santini, C.L., Bernadac, A., Ruan, J., Zhang, S.D., Kato, T., et al. (2012) Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1. J Mol Biol 416: 558–570.
- Zhang, S.D., Petersen, N., Zhang, W.J., Cargou, S., Ruan, J., Murat, D., et al. (2013) Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1. Environ Microbiol Rep 6: 14–20.
- Zhaxybayeva, O., Swithers, K.S., Lapierre, P., Fournier, G.P., Bickhart, D.M., DeBoy, R.T., et al. (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci 106: 5865–5870.
- Zhou, K., Pan, H., Yue, H., Xiao, T., and Wu, L.F. (2010) Architecture of flagellar apparatus of marine magnetotactic cocci from Qingdao. Mar Sci (Chin) 34: 88–92.