Tropical soils are a reservoir for fluorescent Pseudomonas spp. biodiversity
Lucas Dantas Lopes
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorEdward W. Davis II
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorMichele de C. Pereira e Silva
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Search for more papers by this authorAlexandra J. Weisberg
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorLuana Bresciani
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Search for more papers by this authorJeff H. Chang
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorJoyce E. Loper
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorCorresponding Author
Fernando D. Andreote
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
For correspondence. E-mail [email protected]; Tel. +55(19)34172123; Fax (19) 3417-2100/3417-2110.Search for more papers by this authorLucas Dantas Lopes
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorEdward W. Davis II
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorMichele de C. Pereira e Silva
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Search for more papers by this authorAlexandra J. Weisberg
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorLuana Bresciani
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
Search for more papers by this authorJeff H. Chang
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorJoyce E. Loper
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
Search for more papers by this authorCorresponding Author
Fernando D. Andreote
Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
For correspondence. E-mail [email protected]; Tel. +55(19)34172123; Fax (19) 3417-2100/3417-2110.Search for more papers by this authorSummary
Fluorescent Pseudomonas spp. are widely studied for their beneficial activities to plants. To explore the genetic diversity of Pseudomonas spp. in tropical regions, we collected 76 isolates from a Brazilian soil. Genomes were sequenced and compared to known strains, mostly collected from temperate regions. Phylogenetic analyses classified the isolates in the P. fluorescens (57) and P. putida (19) groups. Among the isolates in the P. fluorescens group, most (37) were classified in the P. koreensis subgroup and two in the P. jessenii subgroup. The remaining 18 isolates fell into two phylogenetic subclades distinct from currently recognized P. fluorescens subgroups, and probably represent new subgroups. Consistent with their phylogenetic distance from described subgroups, the genome sequences of strains in these subclades are asyntenous to the genome sequences of members of their neighbour subgroups. The tropical isolates have several functional genes also present in known fluorescent Pseudomonas spp. strains. However, members of the new subclades share exclusive genes not detected in other subgroups, pointing to the potential for novel functions. Additionally, we identified 12 potential new species among the 76 isolates from the tropical soil. The unexplored diversity found in the tropical soil is possibly related to biogeographical patterns.
Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher's web-site:
Filename | Description |
---|---|
emi13957-sup-0001-suppinfo1.tif6.7 MB |
Fig. S1. Non-metric Multidimensional Scaling (NMDS) using the Bray-Curtis similarity index for ordination of samples (isolates and references) according to the ANI values. Black dots are the reference strains; blue dots are isolates in the P. koreensis subgroup; purple dots are isolates in the P. jessenii subgroup; red dots are isolates in the P. putida group; and grey dots are isolates in the new subclades X and Y. |
emi13957-sup-0002-suppinfo2.tif13.4 MB |
Fig. S2. Synteny analyses performed by multiple genome alignments using the mauve software. Different colours in the genome sequences correspond to genome regions with high percentage alignment. Lines indicate rearranged regions and show their position in the compared genomes. The origin of replication is approximately in the middle of each genome sequence, based on the reference genome sequences used to reorder the contigs of the other assemblies analysed, that is, A) isolate R12 (∼2962 Mbp) for the comparison inside the subclade X; and B) isolate R26 (∼3148 Mbp) for the comparison inside the subclade Y. |
emi13957-sup-0003-suppinfo3.pdf222.1 KB |
Table S1. Accession numbers of the 76 genome sequences available in the Genbank/DDBJ/ENA databases. |
emi13957-sup-0004-suppinfo4.pdf98.4 KB |
Table S2. Main quality parameters of genome assemblies output. |
emi13957-sup-0005-suppinfo5.pdf144.9 KB |
Table S3. BLAST searches for the set of genes related to important functions performed by known P. fluorescens strains. Functions were considered present in a genome only if the complete set of genes were found with high similarity and identity hits in the tBLASTn. Abbreviations: DAPG, 2,4-diacetylphloroglucinol; GABA, Gamma-aminobutyric acid; IAA, indole acetic acid (iaaMH); Tcc4 and Tcc5, toxin complex clusters; AprA, exoprotease; T2SS, type 2 secretion system; T3SS, type 3 secretion system; T6SS, type VI secretion system. Toxin complex clusters and secretion systems are designated according to Loper and colleagues (2012). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Aarab, S., Arakrak, A., Ollero, F.J., Megías, M., Gomes, D.F., Ribeiro, R.A., and Hungria, M. (2016) Draft genome sequence of Pseudomonas fluorescens strain ET76, isolated from rice rhizosphere in northwestern Morocco. Genome Announc 4: e00356–e00316.
- Andam, C.P., Doroghazi, J.R., Campbell, A.N., Kelly, P.J., Choudoir, M.J., and Buckley, D.H. (2016) A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces. mBio 7: e02200–e02215.
- Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. [WWW document]. URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc
- Araujo, M.A.V., MendonçA-Hagler, L.C., Hagler, A.N., and Elsas, J.D. (1994) Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soil microcosms. FEMS Microbiol Ecol 13: 205–216.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455–477.
- Brady, N.C., and Weil, R.R. (2002) The Nature and Properties of Soils. Upper Saddle River, NJ: Prentice Hall.
- Bruce, J.B., West, S.A., and Griffin, A.S. (2017) Bacteriocins and the assembly of natural Pseudomonas fluorescens populations. J Evol Biol 30: 352–360.
- Chen, W.J., Hsieh, F.C., Hsu, F.C., Tasy, Y.F., Liu, J.R., and Shih, M.C. (2014) Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects. PLoS Pathog 10: e1004288. doi:10.1371/journal.ppat.1004288
- Cho, J.C., and Tiedje, J.M. (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66: 5448–5456.
- Cho, S.-T., Chang, H.-H., Egamberdieva, D., Kamilova, F., Lugtenberg, B., and Kuo, C.-H. (2015) Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS One 10: e0140231. doi:10.1371/journal.pone.0140231.
- Compeau, G., Al-Achi, B.J., Platsouka, E., and Levy, S.B. (1988) Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54: 2432–2438.
- Contreras-Moreira, B., and Vinuesa, P. (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79: 7696–7701.
- Dagorn, A., Chapalain, A., Mijouin, L., Hillion, M., Duclairoir-Poc, C., Chevalier, S., et al. (2013) Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity. Int J Mol Sci 14: 12186–12204. doi:10.3390/ijms140612186.
- Darling, A.E., Mau, B., and Perna, N.T. (2010) progressiveMauve: multiple genome alignments with gene gain, loss and rearrangement. PLoS One 5: e11147. doi:10.1371/journal.pone.0011147.
- Davis, E.W., II, Weisberg, A.J., Tabima, J.F., Grunwald, N.J., and Chang, J.H. (2016) Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 4: e2222.
- Dawar, C., and Aggarwal, R.K. (2015) Draft genome sequence of hydrocarbon-degrading Pseudomonas putida strain KG-4, isolated from soil samples collected from Krishna-Godavari Basin in India. Genome Announc 3: e00590–e00515.
- Duan, J., Jiang, W., Cheng, Z., Heikkila, J.J., Glick, B.R., and van Passel, M.W.J. (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 8: e58640.
- Dueholm, M.S., Albertsen, M., D'Imperio, S., Tale, V.P., Lewis, D., Nielsen, P.H., and Nielsen, J.L. (2014) Complete genome sequences of Pseudomonas monteilii SB3078 and SB3101, two benzene-, toluene-, and ethylbenzene-degrading bacteria used for bioaugmentation. Genome Announc 2: e00524–e00514.
- Fierer, N., and Jackson, R.B. (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103: 626–631.
- Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., et al. (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109: 21390–21395.
- Flury, P., Vesga, P., Pechy-Tarr, M., Aellen, N., Dennert, F., Hofer, N., et al. (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8: 100. doi:10.3389/fmicb.2017.00100.
- Gamez, R.M., Rodriguez, F., Ramirez, S., Gomez, Y., Agarwala, R., Landsman, D., and Marino, R.L. (2016) Genome sequence of the banana plant growth-promoting rhizobacterium Pseudomonas fluorescens PS006. Genome Announc 4: pii: e00329–16. doi:10.1128/genomeA.00329-16.
- Gardiner, D.M., Stiller, J., Covarelli, L., Lindeberg, M., Shivas, R., and Manners, J.M. (2013) Genome sequences of Pseudomonas spp. isolated from cereal crops. Genome Announc 1: e00209–e00213. doi:10.1128/genomeA.00209-13.
- Garrido-Sanz, D., Meier-Kolthoff, J.P., Göker, M., Martín, M., Rivilla, R., and Redondo-Nieto, M. (2016) Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 11: e0150183. doi:10.1371/journal.pone.0150183.
- Gomila, M., Peña, A., Mulet, M., Lalucat, J., and García-Valdés, E. (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6: 214. doi:10.3389/fmicb.2015.00214.
- Guimaraes, D.V., Gonzaga, M.I.S., Silva, T.O., Silva, T.L., Dias, N.S., and Matias, M.I.S. (2013) Soil organic matter pools and carbon fractions in soil under different land uses. Soil. Till Res 126: 177–182.
- Gumiere, T., Durrer, A., Bohannan, B., and Andreote, F.D. (2016) Biogeographical patterns in fungal communities from soils cultivated with sugarcane. J Biogeogr 43: 2016–2026.
- Hammer, Ø., Harper, D.A.T., and Ryan, P.D. (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4: 1–9.
- Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C., and Martiny, J.B. (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10: 497–506.
- Hernández-Salmerón, J.E., Hernandez-Leon, R., Orozco-Mosqueda, M.D.C., Valencia-Cantero, E., Moreno-Hagelsieb, G., and Santoyo, G. (2016) Genome sequence of the biocontrol and plant growth-promoting rhizobacteria Pseudomonas fluorescens strain UM270. Stand Genomic Sci 11: 5. doi:10.1186/s40793-015-0123-9.
- Ho, B.T., Dong, T.G., and Mekalanos, J.J. (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microb 15: 9–21.
- Hockett, K.L., Nishimura, M.T., Karlsrud, E., Dougherty, K., and Baltrus, D.A. (2014) Pseudomonas syringae CC1557: a highly virulent strain with an unusually small type III effector repertoire that includes a novel effector. Mol Plant Microbe Interact 27: 923–932.
- Hofte, M., and Altier, N. (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161: 464–471.
- Hol, W.H.G., Bezemer, T.M., and Biere, A. (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4: 81. doi:10.3389/fpls.2013.00081.
- Jang, S.H., Kim, J., Kim, J., Hong, S., and Lee, C. (2012) Genome sequence of cold-adapted Pseudomonas mandelii strain JR-1. J Bacteriol 194: 3263.
- Jousset, A., Lara, E., Wall, L.G., and Valverde, C. (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72: 7083–7090.
- Kalpage, F.S.C.P. (1974) Tropical Soils: classification, Fertility and Management. New York, NY: St. Martin's Press, 294 p.
- Kampfer, P. (2012) Systematics of prokaryotes: the state of the art. Antonie Van Leeuwenhoek 101: 3–11.
- Katoh, K., and Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780. doi:10.1093/molbev/mst010.
- Kidarsa, T.A., Shaffer, B.T., Goebel, N.C., Roberts, D.P., Buyer, J.S., Johnson, A., et al. (2013) Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environ Microbiol 15: 716–735.
- Konstantinidis, K.T., and Tiedje, J.M. (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102: 2567–2572.
- Letunic, I., and Bork, P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44: W242–W245. doi:10.1093/nar/gkw290.
- Lo, R., Stanton-Cook, M.J., Beatson, S.A., Turner, M.S., and Bansal, N. (2015) Draft genome sequence of Pseudomonas fluorescens SRM1, an isolate from spoiled raw milk. Genome Announc 3: e00138–e00115. doi:10.1128/genomeA.00138-15.
- Loper, J.E., Hassan, K.A., Mavrodi, D.V., Davis, E.W., Lim, C.K., Shaffer, B.T., et al. (2012) Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8: e1002784.
- Lopes, L.D., Pereira e Silva, M.C., and Andreote, F.D. (2016) Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol 7: 1341. doi:10.3389/fmicb.2016.01341.
- Lujan, A.M., Gomez, P., and Buckling, A. (2015) Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol Lett 11: 20140934.
- Ly, L.K., Underwood, G.E., McCully, L.M., Bitzer, A.S., Godino, A., Bucci, V., et al. (2015) Draft genome sequences of Pseudomonas fluorescens strains SF39a and SF4c, potential plant growth promotion and biocontrol agents. Genome Announc 3: e00219–e00215.
- Manikandan, R., and Raguchander, T. (2015) Pseudomonas fluorescens (Pf1) mediated chitinolytic activity in tomato plants against Fusarium oxysporum f. sp. lycopersici. Afr J Microbiol Res 9: 1331–1337.
- Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17: 10–12.
- Molina, L., Bernal, P., Udaondo, Z., Segura, A., and Ramos, J.L. (2013) Complete genome sequence of a Pseudomonas putida clinical isolate, strain H8234. Genome Announc 1: e00496–e00413.
- Molina, L., Udaondo, Z., Duque, E., Fernández, M., Molina-Santiago, C., Roca, A., et al. (2014) Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital. PLoS One 9: e81604.
- Mulet, M., Sánchez, D., Lalucat, J., Lee, K., and García-Valdés, E. (2015) Pseudomonas alkylphenolia sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. Int J Syst Evo Microbiol 65: 4013–4018.
- Oren, A., and Garrity, G.M. (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek 106: 43–56.
- Palleroni, N.J. (1992) Introduction to the Pseudomonadaceae. In The Prokaryotes, a Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification and Applications, Vol. III, 2nd ed. A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.H. Schlepper (eds). New York, NY, USA: Springer, pp. 3071–3085.
- Park, G.S., Chu, J.H., Hong, S.J., Kwak, Y., Khan, A.R., Jung, B.K., et al. (2014) Complete genome sequence of the caprolactam-degrading bacterium Pseudomonas mosselii SJ10 isolated from wastewater of a nylon 6 production plant. J Biotechnol 192: 263–264.
- Patten, C.L., and Glick, B.R. (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68: 3795–3801.
- Paulsen, I.T., Press, C.M., Ravel, J., Kobayashi, D.Y., Myers, G.S., Mavrodi, D.V., et al. (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23: 873–878.
- Pliego, C., López-Herrera, C., Ramos, C., and Cazorla, F.M. (2012) Developing tools to unravel the biological secrets of Rosellinia necatrix, and emergent threat to woody crops. Mol Plant Pathol 13: 226–239.
- Rainey, P.B., and Bailey, M.J. (1996) Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19: 521–533.
- Rani, P., Mahato, N.K., Sharma, A., Rao, D.L.N., Kamra, K., and Lal, R. (2017) Genome mining and predictive functional profiling of acidophilic rhizobacterium Pseudomonas fluorescens Pt14. Indian J Microbiol 57: 155–161.
- Rezzonico, F., Binder, C., Défago, G., and Moënne-Loccoz, Y. (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe Interact 18: 991–1001.
- Ross, S.M. (1993) Organic matter in tropical soils: current conditions, concerns and prospects for conservation. Prog Phys Geogr 17: 265–305.
- Seeman, T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068–2069.
- Silby, M.W., Winstanley, C., Godfrey, S.A.C., Levy, S.B., and Jackson, R.W. (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35: 652–680.
- Spiers, A.J., Buckling, A., and Rainey, P.B. (2000) The causes of Pseudomonas diversity. Microbiology 146: 2345–2350.
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
- Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., et al. (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75: 748–757.
- Tao, F., Shen, Y., Fan, Z., Tang, H., and Xu, P. (2012) Genome sequence of Pseudomonas putida S12, a potential platform strain for industrial production of valuable chemicals. J Bacteriol 194: 5985–5986.
- Trapet, P., Avoscan, L., Klinguer, A., Pateyron, S., Citerne, S., Chervin, C., et al. (2016) The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favour of growth in iron-deficient conditions. Plant Physiol 171: 675–693. doi:10.1104/pp.15.01537.
- Udaondo, Z., Molina, L., Segura, A., Duque, E., and Ramos, J.L. (2016) Analysis of the core genome and pangenome of Pseudomonas putida. Environ Microbiol 18: 3268–3283.
- Vilo, C.A., Benedik, M.J., Kunz, D.A., and Dong, Q. (2012) Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764. J Bacteriol 194: 6618–6619.
- Visca, P., Imperi, F., and Lamont, I.L. (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15: 22–30.
- de Werra, P., Pechy-Tarr, M., Keel, C., and Maurhofer, M. (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75: 4162–4174.
- Wickham, H. (2009) ggplot2: Elegant Graphics for Data Analysis. New York, NY, USA: Springer-Verlag.
- Yang, L., Jelsbak, L., Marvig, R.L., Damkiær, S., Workman, C.T., Rau, M.H., et al. (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 108: 7481–7486.