Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages
Corresponding Author
Gordon M. Bennett
Life and Environmental Sciences Unit, University of California, Merced, CA, 95343 USA
Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822 USA
For correspondence. E-mail [email protected]; Tel. +510-919-2696.Search for more papers by this authorMeng Mao
Life and Environmental Sciences Unit, University of California, Merced, CA, 95343 USA
Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822 USA
Search for more papers by this authorCorresponding Author
Gordon M. Bennett
Life and Environmental Sciences Unit, University of California, Merced, CA, 95343 USA
Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822 USA
For correspondence. E-mail [email protected]; Tel. +510-919-2696.Search for more papers by this authorMeng Mao
Life and Environmental Sciences Unit, University of California, Merced, CA, 95343 USA
Department of Plant and Environmental Protections Sciences, University of Hawaii at Mānoa, Honolulu, HI, 96822 USA
Search for more papers by this authorSummary
Insects in the Auchenorrhyncha (Hemiptera: Suborder) established nutritional symbioses with bacteria approximately 300 million years ago (MYA). The suborder split early during its diversification (~ 250 MYA) into the Fulgoroidea (planthoppers) and Cicadomorpha (leafhoppers and cicadas). The two lineages share some symbionts, including Sulcia and possibly a Betaproteobacteria that collaboratively provide their hosts with 10 essential amino acids (EAA). Some hosts harbour three bacteria, as is common among planthoppers. However, genomic studies are currently restricted to the dual-bacterial symbioses found in Cicadomorpha, leaving the origins and functions of these more complex symbioses unclear. To address these questions, we sequenced the genomes and performed phylogenomic analyses of ‘Candidatus Sulcia muelleri’ (Bacteroidetes), ‘Ca. Vidania fulgoroideae’ (Betaproteobacteria) and ‘Ca. Purcelliella pentastirinorum’ (Gammaproteobacteria) from a planthopper (Cixiidae: Oliarus). In contrast to the Cicadomorpha, nutritional synthesis responsibilities are rearranged between the cixiid symbionts. Although Sulcia has a highly conserved genome across the Auchenorrhyncha, in the cixiids it is greatly reduced and provides only three EAAs. Vidania contributes the remaining seven EAAs. Phylogenomic results suggest that it represents an ancient symbiont lineage paired with Sulcia throughout the Auchenorrhyncha. Finally, Purcelliella was recently acquired from plant-insect associated bacteria (Pantoea-Erwinia) to provide B vitamins and metabolic support to its degenerate partners.
Supporting Information
Filename | Description |
---|---|
emi14367-sup-0001-AppendixS1.gbPDF document, 976.2 KB | Appendix S1: Supporting Information |
emi14367-sup-0002-AppendixS2.gbPDF document, 330.3 KB | Appendix S2: Supporting Information |
emi14367-sup-0003-AppendixS3.gbPDF document, 294.1 KB | Appendix S3: Supporting Information |
emi14367-sup-0004-TableS1.xlsxExcel 2007 spreadsheet , 94.8 KB | Table S1 Genome annotations for ‘Candidatus Sulcia muelleri’ (Bacteroidetes), ‘Ca. Vidania fulgoroideae’ (Betaproteobacteria), and ‘Ca. Purcelliella pentastirinorum’ (Gammaproteobacteria) from the Hawaiian planthopper host, Oliarus filicicola (Hemiptera: Auchenorrhyncha: Cixiidae: OLIH). |
emi14367-sup-0005-TableS2.docxWord 2007 document , 90.4 KB | Table S2 Genes used for phylogenetic analysis of Gammaproteobacteria and Betaproteobacteria. |
emi14367-sup-0006-TableS3.xlsxExcel 2007 spreadsheet , 81.9 KB | Table S3 Taxon sampling for phylogenomic analysis of the Gammaproteobacteria. |
emi14367-sup-0007-TableS4.xlsxExcel 2007 spreadsheet , 89.8 KB | Table S4 Taxon sampling for phylogenomic analysis of the Betaproteobacteria. |
emi14367-sup-0008-DataS1.trePDF document, 20.5 KB | Data File S1 Maximum likelihood phylogenies for Betaproteobacteria reconstructed with RAxML v8.2.10 for 130 taxa and 7,438 sites (30 genes). Node support values were determined with 500 bootstrap partitions. File includes results for normal and dayhoff6 recoded gene matrices. |
emi14367-sup-0009-DataS2.trePDF document, 20 KB | Data File S2 Bayesian phylogenies for Betaproteobacteria reconstructed with Phylobayes_MPI v1.7 130 taxa and 7,438 sites (30 genes). Consensus tree was determined from two chains run for 60 million generations. Node support values are expressed as posterior support values. File includes results for combined runs, run 1, and run 2. |
emi14367-sup-0010-DataS3.trePDF document, 26.7 KB | Data File S3 Maximum likelihood phylogenies for Gammaproteobacteria reconstructed with RAxML v8.2.10 for 169 taxa and 15,454 sites (61 genes). Node support values were determined with 500 bootstrap partitions. File includes results for normal and dayhoff6 recoded gene matrices. |
emi14367-sup-0011-DataS4.trePDF document, 25.5 KB | Data File S4 Bayesian phylogenies for Gammaproteobacteria reconstructed with Phylobayes_MPI v1.7 169 taxa and 15,454 sites (61 genes). Consensus tree was determined from two chains run for 30 million generations. Node support values are expressed as posterior support values. File includes results for combined runs, run 1, and run 2. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Andrews, S. (2010) FastQC: a quality control tool for high throughput sequence data. URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- Arnér, E. S., and Holmgren, A. (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267: 6102–6109.
- Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., et al. (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9: 75.
- Baumann, P. (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59: 155–189.
- Bennett, G. M., and Moran, N. A. (2013) Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol 5: 1675–1688.
- Bennett, G. M., and Moran, N. A. (2015) Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci U S A 112: 10169–10176.
- Bennett, G. M., Abba, S., Kube, M., and Marzachì, C. (2016a) Complete genome sequences of the obligate symbionts ‘Candidatus Sulcia muelleri’ and ‘Ca. Nasuia deltocephalinicola’ from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announc 4: e01604–e01615.
- Bennett, G. M., McCutcheon, J. P., McDonald, B. R., and Moran, N. A. (2016b) Lineage-specific patterns of genome deterioration in obligate symbionts of sharpshooter leafhoppers. Genome Biol Evol 8: 296–301.
- Bolger, A. M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.
- Boscaro, V., Kolisko, M., Felletti, M., Vannini, C., Lynn, D. H., and Keeling, P. J. (2017) Parallel genome reduction in symbionts descended from closely related free-living bacteria. Nat Ecol Evol 1: 1160–1167.
- Bressan, A., and Mulligan, K. L. (2013) Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae). Environ Microbiol Rep 5: 499–505.
- Bressan, A., Arneodo, J., Simonato, M., Haines, W. P., and Boudon-Padieu, E. (2009) Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ Microbiol 11: 3265–3279.
- Buchner, P. (1965) Endosymbiosis of Animals with Plant Microorganisms. New York, NY: John Wiley & Sons.
- Campbell, M. A., Łukasik, P., Simon, C., and McCutcheon, J. P. (2017) Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr Biol 27: 3568–3575.
- Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.
- Chang, H.-H., Cho, S.-T., Canale, M. C., Mugford, S. T., Lopes, J. R. S., Hogenhout, S. A., et al. (2015) Complete genome sequence of ‘Candidatus Sulcia muelleri’ ML, an obligate nutritional symbiont of maize leafhopper (Dalbulus maidis). Genome Announc 3: e01483-01414.
10.1128/genomeA.01483-14 Google Scholar
- Chen, L., Chen, Z., Zheng, P., Sun, J., and Zeng, A.-P. (2013) Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. Appl Microbiol Biotechnol 97: 2939–2949.
- Cryan, J. R., and Urban, J. M. (2011) Higher-level phylogeny of the insect order Hemiptera: is Auchenorrhyncha really paraphyletic? Syst Entomol 37: 7–21.
- Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27: 1164–1165.
- Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. (1978) A model of evolutionary change in proteins . In Atlas of Protein Sequence and Structure, M. O. Dayhoff (ed). Silver Spring, MD: National Biomedical Research Foundation, pp. 345–352.
- Delcher, A. L., Bratke, K. A., Powers, E. C., and Salzberg, S. L. (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23: 673–679.
- Douglas, A. E. (1993) The nutritional quality of phloem sap utilized by natural aphid populations. Ecol Entomol 18: 31–38.
- Douglas, A. E. (2016) How multi-partner endosymbioses function. Nat Rev Microbiol 14: 731–743.
- Douglas, A. E. (2017) The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr Opin Insect Sci 23: 65–69.
- Eddy, S. R. (2011) Accelerated profile HMM searches. PLoS Comput Biol 7: e1002195.
- Figge, R. M. (2006) Methionine biosynthesis in Escherichia coli and Corynebacterium glutamicum . In Microbiology Monographs Vol. 5. Amino Acid Biosynthesis Pathways, Regulation and Metabolic Engineering. Berlin, Heidelberg: Springer, pp. 163–193.
10.1007/7171_2006_059 Google Scholar
- Gonella, E., Negri, I., Marzorati, M., Mandrioli, M., Sacchi, L., Pajoro, M., et al. (2011) Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of bois noir in Vitis vinifera. Appl Environ Microbiol 77: 1423–1435.
- Guy, L. (2017) PhyloSkeleton: taxon selection, data retrieval and marker identification for phylogenomics. Bioinformatics 33: 1230–1232.
- Hansen, A. K., and Moran, N. A. (2011) Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci U S A 108: 2849–2854.
- Hansen, A. K., and Moran, N. A. (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23: 1473–1496.
- Husnik, F., and McCutcheon, J. P. (2016) Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug. Proc Natl Acad Sci U S A 113: E5416–E5424.
- Husnik, F., Chrudimský, T., and Hypša, V. (2011) Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol 9: 87.
- Husnik, F., Nikoh, N., Koga, R., Ross, L., Duncan, R. P., Fujie, M., et al. (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153: 1567–1578.
- Katoh, K., and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.
- Koga, R., and Moran, N. A. (2014) Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J 8: 1237–1246.
- Koga, R., Bennett, G. M., Cryan, J. R., and Moran, N. A. (2013) Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol 15: 2073–2081.
- Langmead, B., and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9: 357–359.
- Lartillot, N., Rodrigue, N., Stubbs, D., and Richer, J. (2013) PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 2: 611–615.
- Lopez-Madrigal, S., Latorre, A., Porcar, M., Moya, A., and Gil, R. (2011) Complete genome sequence of ‘Candidatus Tremblaya princeps’ strain PCVAL, an intriguing translational machine below the living-cell status. J Bacteriol 193: 5587–5588.
- Lowe, T. M., and Chan, P. P. (2016) tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44: W54–W57.
- Luan, J.-B., Chen, W., Hasegawa, D. K., Simmons, A. M., Wintermantel, W. M., Ling, K.-S., et al. (2015) Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol 7: 2635–2647.
- Mao, M., Yang, X., Poff, K., and Bennett, G. M. (2017) Comparative genomics of the dual-obligate symbionts from the treehopper, Entylia carinata (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Genome Biol Evol 9: 1803–1815.
- McCutcheon, J. P., and Moran, N. A. (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A 104: 19392–19397.
- McCutcheon, J. P., and Moran, N. A. (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 million years of evolution. Genome Biol Evol 2: 708–718.
- McCutcheon, J. P., and Moran, N. A. (2011) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10: 13–26.
- McCutcheon, J. P., and von Dohlen, C. D. (2011) An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 21: 1366–1372.
- McCutcheon, J. P., McDonald, B. R., and Moran, N. A. (2009) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci U S A 106: 15394–15399.
- Michalik, A., Szwedo, J., Stroiński, A., Świerczewski, D., and Szklarzewicz, T. (2018) Symbiotic cornucopia of the monophagous planthopper Ommatidiotus dissimilis (Fallén, 1806) (Hemiptera: Fulgoromorpha: Caliscelidae). Protoplasma 50: 1–13.
- Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, LA, USA, pp. 1–8.
- Moran, N. A. (1996) Accelerated evolution and Muller's ratchet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 93: 2873–2878.
- Moran, N. A., and Baumann, P. (2000) Bacterial endosymbionts in animals. Curr Opin Microbiol 3: 270–275.
- Moran, N. A., and Bennett, G. M. (2014) The tiniest tiny genomes. Annu Rev Microbiol 68: 195–215.
- Moran, N. A., Tran, P., and Gerardo, N. M. (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71: 8802–8810.
- Müller, H. J. (1949) Zur systematik und phylogenie der zikaden-endosymbiosen. Biol Zbl 68: 343–368.
- Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27: 824–834.
- Oakeson, K. F., Gil, R., Clayton, A. L., Dunn, D. M., von Niederhausern, A. C., Hamil, C., et al. (2014) Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 6: 76–93.
- Poliakov, A., Russell, C. W., Ponnala, L., Hoops, H. J., Sun, Q., Douglas, A. E., and van Wijk, K. J. (2011) Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis. Mol Cell Proteom 10: M110.007039.
- Sabater-Muñoz, B., Toft, C., Alvarez-Ponce, D., and Fares, M. A. (2017) Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. ISME J 11: 1291–1304.
- Sandström, J., and Moran, N. A. (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91: 203–210.
- Shcherbakov, D. E. (2002) The 270 million year history of Auchenorrhyncha (Homoptera). Denisia 176: 29–36.
- Sloan, D. B., Nakabachi, A., Richards, S., Qu, J., Murali, S. C., Gibbs, R. A., and Moran, N. A. (2014) Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol 31: 857–871.
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
- Sudakaran, S., Kost, C., and Kaltenpoth, M. (2017) Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25: 375–390.
- Szabó, G., Schulz, F., Toenshoff, E. R., Volland, J.-M., Finkel, O. M., Belkin, S., and Horn, M. (2017) Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME J 11: 715–726.
- Szwedo, J., Bourgoin, T., and Lefebvre, F. (2004) Fossil Planthoppers (Hemiptera: Fulgoromorpha) of the World: An Annotated Catalogue with Notes on Hemiptera Classification. Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw.
- Urban, J. M., and Cryan, J. R. (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol Biol 12: 87.
- Walterson, A. M., and Stavrinides, J. (2015) Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 39: 968–984.
- Weglarz, K. M., Havill, N. G., Burke, G. R., and von Dohlen, C. D. (2018) Partnering with a pest: genomes of hemlock woolly adelgid symbionts reveal atypical nutritional provisioning patterns in dual-obligate bacteria. Genome Biol Evol 10: 1607–1621.
- Wernegreen, J. J. (2015) Endosymbiont evolution: predictions from theory and surprises from genomes. Ann NY Acad Sci 1360: 16–35.
- Wernegreen, J. J. (2017) In it for the long haul: evolutionary consequences of persistent endosymbiosis. Curr Opin Genet Dev 47: 83–90.
- Wu, D., Daugherty, S. C., Van Aken, S. E., Pai, G. H., Watkins, K. L., Khouri, H., et al. (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4: e188.
- Xue, J., Zhou, X., Zhang, C.-X., Yu, L.-L., Fan, H.-W., Wang, Z., et al. (2014) Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol 15: 521.
- Zimmerman, E. C. (1945) Insects of Hawaii. Vol. 4. Homoptera: Auchenorrhyncha. Honolulu, USA: University of Hawaii Press.
- Zhang, W., Collinet, B., Perrochia, L., Durand, D., and van Tilbeurgh, H. (2015) The ATP-mediated formation of the YgjD-YeaZ-YjeE complex is required for the biosynthesis of tRNA t6A in Escherichia coli. Nucleic Acids Res 43: 1804–1817.