Particle-associated and free-living bacterial communities in an oligotrophic sea are affected by different environmental factors
Dalit Roth Rosenberg
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorMarkus Haber
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Present address: Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia.
Search for more papers by this authorJoshua Goldford
Bioinformatics Program, Boston University, Boston, MA, USA
Search for more papers by this authorMaya Lalzar
Bioinformatics Support Unit, University of Haifa, Haifa, Israel
Search for more papers by this authorDikla Aharonovich
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorAshraf Al-Ashhab
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
Search for more papers by this authorYoav Lehahn
Department of Maritime Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorDaniel Segrè
Bioinformatics Program, Boston University, Boston, MA, USA
Search for more papers by this authorLaura Steindler
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorCorresponding Author
Daniel Sher
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
For correspondence. E-mail [email protected]; Fax +97 248 240731.
Search for more papers by this authorDalit Roth Rosenberg
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorMarkus Haber
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Present address: Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia.
Search for more papers by this authorJoshua Goldford
Bioinformatics Program, Boston University, Boston, MA, USA
Search for more papers by this authorMaya Lalzar
Bioinformatics Support Unit, University of Haifa, Haifa, Israel
Search for more papers by this authorDikla Aharonovich
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorAshraf Al-Ashhab
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Microbial Metagenomics Division, Dead Sea and Arava Science Center, Masada, Israel
Search for more papers by this authorYoav Lehahn
Department of Maritime Geosciences, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorDaniel Segrè
Bioinformatics Program, Boston University, Boston, MA, USA
Search for more papers by this authorLaura Steindler
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Search for more papers by this authorCorresponding Author
Daniel Sher
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
For correspondence. E-mail [email protected]; Fax +97 248 240731.
Search for more papers by this authorSummary
In the oceans and seas, environmental conditions change over multiple temporal and spatial scales. Here, we ask what factors affect the bacterial community structure across time, depth and size fraction during six seasonal cruises (2 years) in the ultra-oligotrophic Eastern Mediterranean Sea. The bacterial community varied most between size fractions (free-living (FL) vs. particle-associated), followed by depth and finally season. The FL community was taxonomically richer and more stable than the particle-associated (PA) one, which was characterized by recurrent ‘blooms’ of heterotrophic bacteria such as Alteromonas and Ralstonia. The heterotrophic FL and PA communities were also correlated with different environmental parameters: the FL population correlated with depth and phytoplankton, whereas PA bacteria were correlated primarily with the time of sampling. A significant part of the variability in community structure could, however, not be explained by the measured parameters. The metabolic potential of the PA community, predicted from 16S rRNA amplicon data using PICRUSt, was enriched in pathways associated with the degradation and utilization of biological macromolecules, as well as plastics, other petroleum products and herbicides. The FL community was enriched in predicted pathways for the metabolism of inositol phosphate, a potential phosphorus source, and of polycyclic aromatic hydrocarbons.
Supporting Information
Filename | Description |
---|---|
emi15611-sup-0001-Supinfo.zipapplication/x-zip-compressed, 10 MB | Appendix S1: Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Amin, S.A., Parker, M.S., and Armbrust, E.V. (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76: 667–684. https://doi.org/10.1128/mmbr.00007-12.
- Azam, F., and Malfatti, F. (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5: 966–U923. https://doi.org/10.1038/Nrmicro1747.
- Azov, Y. (1986) Seasonal patterns of phytoplankton productivity and abundance in nearshore oligotrophic waters of the Levant Basin (Mediterranean). J Plankton Res 8: 41–53. https://doi.org/10.1093/plankt/8.1.41.
- Bachmann, J., Heimbach, T., Hassenrück, C., Kopprio, G.A., Iversen, M.H., Grossart, H.P., and Gärdes, A. (2018) Environmental drivers of free-living vs. particle-attached bacterial community composition in the Mauritania upwelling system. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02836.
- Barak-Gavish, N., Frada, M.J., Ku, C., Lee, P.A., DiTullio, G.R., Malitsky, S., et al. (2018) Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci Adv 4: eaau5716. https://doi.org/10.1126/sciadv.aau5716.
- Berman, T., Walline, P.D., Schneller, A., Rothenberg, J., and Townsend, D.W. (1985) Secchi disk depth record: a claim for the eastern Mediterranean1. Limnol Oceanogr 30: 447–448. https://doi.org/10.4319/lo.1985.30.2.0447.
- Bižić-Ionescu, M., Zeder, M., Ionescu, D., Orlić, S., Fuchs, B.M., Grossart, H.-P., and Amann, R. (2015) Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ Microbiol 17: 3500–3514. https://doi.org/10.1111/1462-2920.12466.
- Bleu, U. M.-P. (2009) UNEP/MAP-Plan Bleu: State of the Environment and Development in the Mediterranean. Athens.
- Buchan, A., LeCleir, G.R., Gulvik, C.A., and Gonzalez, J.M. (2014) Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 12: 686–698. https://doi.org/10.1038/nrmicro3326.
- Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P. (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13: 581–583. https://doi.org/10.1038/nmeth.3869, https://www.nature.com/articles/nmeth.3869#supplementary-information.
- Chen, Q., Reisser, J., Cunsolo, S., Kwadijk, C., Kotterman, M., Proietti, M., et al. (2018) Pollutants in plastics within the North Pacific subtropical gyre. Environ Sci Technol 52: 446–456. https://doi.org/10.1021/acs.est.7b04682.
- Cirri, E., and Pohnert, G. (2019) Algae−bacteria interactions that balance the planktonic microbiome. New Phytol 223: 100–106. https://doi.org/10.1111/nph.15765.
- De Martini, F., Neuer, S., Hamill, D., Robidart, J., and Lomas, M.W. (2018) Clade and strain specific contributions of Synechococcus and Prochlorococcus to carbon export in the Sargasso Sea. Limnol Oceanogr 63: S448–S457. https://doi.org/10.1002/lno.10765.
- DeLong, E.F., Preston, C.M., Mincer, T., Rich, V., Hallam, S.J., Frigaard, N.U., et al. (2006) Community genomics among stratified microbial assemblages in the ocean's interior. Science 311: 496–503.
- Durham, B.P., Boysen, A.K., Carlson, L.T., Groussman, R.D., Heal, K.R., Cain, K.R., et al. (2019) Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol 4: 1706–1715. https://doi.org/10.1038/s41564-019-0507-5.
- Echeveste, P., Agusti, S., and Dachs, J. (2010) Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environ Pollut 158: 299–307.
- Fuhrman, J.A. (2009) Microbial community structure and its functional implications. Nature 459: 193–199.
- Galand, P.E., Pereira, O., Hochart, C., Auguet, J.C., and Debroas, D. (2018) A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J 12: 2470–2478. https://doi.org/10.1038/s41396-018-0158-1.
- Ghiglione, J.F., Mevel, G., Pujo-Pay, M., Mousseau, L., Lebaron, P., and Goutx, M. (2007) Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb Ecol 54: 217–231. https://doi.org/10.1007/s00248-006-9189-7.
- Ghosal, D., Ghosh, S., Dutta, T.K., and Ahn, Y. (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7: 1369–1369. https://doi.org/10.3389/fmicb.2016.01369.
- Giovannoni, S.J. (2017) SAR11 bacteria: the Most abundant plankton in the oceans. Ann Rev Mar Sci 9: 231–255. https://doi.org/10.1146/annurev-marine-010814-015934.
- Giovannoni, S.J., and Vergin, K.L. (2012) Seasonality in ocean microbial communities. Science 335: 671–676. https://doi.org/10.1126/science.1198078.
- Goldford, J.E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A., et al. (2018) Emergent simplicity in microbial community assembly. Science 361: 469–474. https://doi.org/10.1126/science.aat1168.
- Grossart, H.P., Dziallas, C., Leunert, F., and Tang, K.W. (2010) Bacteria dispersal by hitchhiking on zooplankton. Proc Natl Acad Sci U S A 107: 11959–11964. 1000668107 [pii]. https://doi.org/10.1073/pnas.1000668107.
- Haber, M., Roth-Rosenberg, D., Lalzar, M., Burgsdorf, I., Saurav, K., Lionheart, R., et al. (2020) Microbial communities in an ultra-oligotrophic sea are more affected by season than by distance from shore. bioRxiv. https://doi.org/10.1101/2020.04.17.044305.
- Hale, R.C., Seeley, M.E., La Guardia, M.J., Mai, L., and Zeng, E.Y. (2020) A global perspective on microplastics. J Geophys Res: Oceans 125: e2018JC014719. https://doi.org/10.1029/2018JC014719.
- Haro-Moreno, J.M., López-Pérez, M., de la Torre, J.R., Picazo, A., Camacho, A., and Rodriguez-Valera, F. (2018) Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome 6: 128. https://doi.org/10.1186/s40168-018-0513-5.
- Herut, B., Collier, R., and Krom, M.D. (2002) The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol Oceanogr 47: 870–878. https://doi.org/10.4319/lo.2002.47.3.0870.
- Hooker, S.B., Heukelem, L., Thomas, C., Claustre, H., Ras, J., Barlow, R., et al. (2005) The Second SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-2), Greenbelt, Maryland: NASA Tech Memo, pp. 1–112.
- Iakovides, M., Stephanou, E.G., Apostolaki, M., Hadjicharalambous, M., Evans, J.S., Koutrakis, P., and Achilleos, S. (2019) Study of the occurrence of airborne polycyclic aromatic hydrocarbons associated with respirable particles in two coastal cities at eastern Mediterranean: levels, source apportionment, and potential risk for human health. Atmos Environ 213: 170–184. https://doi.org/10.1016/j.atmosenv.2019.05.059.
- Isobe, A., Iwasaki, S., Uchida, K., and Tokai, T. (2019) Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat Commun 10: 417. https://doi.org/10.1038/s41467-019-08316-9.
- Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W. (2005) Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. France: UNESCO.
- Karl, D.M. (2007) Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol 5: 759–769. https://doi.org/10.1038/nrmicro1749.
- Karl, D.M., Bidigare, R.R., and Letelier, R.M. (2002) Sustained and aperiodic variability in organic matter production and phototrophic microbial community structure in the North Pacific subtropical gyre. In Phytoplankton Productivity, Hoboken, NJ: P. J. L. B. Williams, D. N. Thomas and C. S. Reynolds, Wiley, pp. 222–264. https://doi.org/10.1002/9780470995204.ch9.
10.1002/9780470995204.ch9 Google Scholar
- Krom, M.D., Woodward, E.M.S., Herut, B., Kress, N., Carbo, P., Mantoura, R.F.C., et al. (2005) Nutrient cycling in the south east Levantine basin of the eastern Mediterranean: results from a phosphorus starved system. Deep-Sea Res II Top Stud Oceanogr 52: 2879–2896. https://doi.org/10.1016/j.dsr2.2005.08.009.
- Kwon, B.G., Koizumi, K., Chung, S.-Y., Kodera, Y., Kim, J.O., and Saido, K. (2015) Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J Hazard Mater 300: 359–367. https://doi.org/10.1016/j.jhazmat.2015.07.039.
- Landrigan, P.J., Stegeman, J.J., Fleming, L.E., Allemand, D., Anderson, D.M., Backer, L.C., et al. (2020) Human health and ocean pollution. Ann Global Health 86: 151. https://doi.org/10.5334/Aogh.2831.
- Langenheder, S., and Székely, A.J. (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5: 1086–1094. https://doi.org/10.1038/ismej.2010.207.
- Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., et al. (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31: 814–821. https://doi.org/10.1038/nbt.2676, https://www.nature.com/articles/nbt.2676#supplementary-information.
- Lauro, F.M., McDougald, D., Thomas, T., Williams, T.J., Egan, S., Rice, S., et al. (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A 106: 15527–15533. https://doi.org/10.1073/pnas.0903507106.
- Lomas, M.W., and Moran, S.B. (2012) Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone. Biogeosciences 7: 7173–7206.
- Louca, S., Parfrey, L.W., and Doebeli, M. (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353: 1272–1277. https://doi.org/10.1126/science.aaf4507.
- Ma, L., Calfee, B.C., Morris, J.J., Johnson, Z.I., and Zinser, E.R. (2017) Degradation of hydrogen peroxide at the ocean's surface: the influence of the microbial community on the realized thermal niche of Prochlorococcus. ISME J 12: 473–484. https://doi.org/10.1038/ismej.2017.182, https://www.nature.com/articles/ismej2017182#supplementary-information.
- Malmstrom, R.R., Coe, A., Kettler, G.C., Martiny, A.C., Frias-Lopez, J., Zinser, E.R., and Chisholm, S.W. (2010) Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J 4: 1252–1264. https://doi.org/10.1038/ismej.2010.60.
- Man-Aharonovich, D., Philosof, A., Kirkup, B.C., Le Gall, F., Yogev, T., Berman-Frank, I., et al. (2010) Diversity of active marine picoeukaryotes in the eastern Mediterranean Sea unveiled using photosystem-II psbA transcripts. ISME J 4: 1044–1052. https://doi.org/10.1038/ismej.2010.25.
- Martin-Platero, A.M., Cleary, B., Kauffman, K., Preheim, S.P., McGillicuddy, D.J., Alm, E.J., and Polz, M.F. (2018) High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun 9: 266. https://doi.org/10.1038/s41467-017-02571-4.
- Mayzaud, J.P., Chanut, J.P., and Ackman, R.G. (1989) Seasonal changes of the biochemical composition of marine particulate matter with special reference to fatty acids and sterols. Mar Ecol Prog Ser 56: 189–204.
- Mende, D.R., Boeuf, D., and DeLong, E.F. (2019) Persistent core populations shape the microbiome throughout the Water column in the North Pacific Subtropical Gyre. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02273.
- Mestre, M., Borrull, E., Sala, M.M., and Gasol, J.M. (2017a) Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J 11: 999–1010. https://doi.org/10.1038/ismej.2016.166.
- Mestre, M., Ferrera, I., Borrull, E., Ortega-Retuerta, E., Mbedi, S., Grossart, H.-P., et al. (2017b) Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol Ecol 26: 6827–6840. https://doi.org/10.1111/mec.14421.
- Mestre, M., Höfer, J., Sala, M.M., and Gasol, J.M. (2020) Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front Microbiol 11: 1590. https://doi.org/10.3389/fmicb.2020.01590.
- Mestre, M., Ruiz-González, C., Logares, R., Duarte, C.M., Gasol, J.M., and Sala, M.M. (2018) Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci U S A 115: E6799–E6807. https://doi.org/10.1073/pnas.1802470115.
- Milici, M., Deng, Z.-L., Tomasch, J., Decelle, J., Wos-Oxley, M.L., Wang, H., et al. (2016) Co-occurrence analysis of microbial taxa in the Atlantic Ocean reveals high connectivity in the free-living Bacterioplankton. Front Microbiol 7: 649. https://doi.org/10.3389/fmicb.2016.00649.
- Oberbeckmann, S., and Labrenz, M. (2020) Marine microbial assemblages on microplastics: diversity, adaptation, and role in degradation. Annu Rev Mar Sci 12: 209–232. https://doi.org/10.1146/annurev-marine-010419-010633.
- Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B. (2017) Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea. Global Planet Change 151: 60–67. https://doi.org/10.1016/j.gloplacha.2016.04.001.
- Parada, A.E., Needham, D.M., and Fuhrman, J.A. (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 18: 1403–1414. https://doi.org/10.1111/1462-2920.13023.
- Powley, H.R., Krom, M.D., and Van Cappellen, P. (2017) Understanding the unique biogeochemistry of the Mediterranean Sea: insights from a coupled phosphorus and nitrogen model. Global Biogeochem Cycles 31: 1010–1031. https://doi.org/10.1002/2017gb005648.
- Raes, E.J., Karsh, K., Sow, S.L.S., Ostrowski, M., Brown, M.V., van de Kamp, J., et al. (2021) Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat Commun 12: 2213. https://doi.org/10.1038/s41467-021-22409-4.
- Raveh, O., David, N., Rilov, G., and Rahav, E. (2015) The temporal dynamics of coastal phytoplankton and Bacterioplankton in the eastern Mediterranean Sea. PLoS One 10: e0140690. https://doi.org/10.1371/journal.pone.0140690.
- Reich, T., Ben-Ezra, T., Belkin, N., Tsemel, A., Aharonovich, D., Roth-Rosenberg, D., et al. (2021) Seasonal dynamics of phytoplankton and bacterioplankton at the ultra-oligotrophic southeastern Mediterranean Sea. bioRxiv. https://doi.org/10.1101/2021.03.24.436734.
10.1101/2021.03.24.436734 Google Scholar
- Richardson, T.L., and Jackson, G.A. (2007) Small phytoplankton and carbon export from the surface ocean. Science 315: 838–840.
- Rieck, A., Herlemann, D.P.R., Jürgens, K., and Grossart, H.-P. (2015) Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front Microbiol 6: 1297. https://doi.org/10.3389/fmicb.2015.01297.
- Rios, L.M., Jones, P.R., Moore, C., and Narayan, U.V. (2010) Quantitation of persistent organic pollutants adsorbed on plastic debris from the northern Pacific Gyre's “eastern garbage patch”. J Environ Monit 12: 2226–2236. https://doi.org/10.1039/C0EM00239A.
- Romera-Castillo, C., Pinto, M., Langer, T.M., Álvarez-Salgado, X.A., and Herndl, G.J. (2018) Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun 9: 1430. https://doi.org/10.1038/s41467-018-03798-5.
- Salazar, G., Paoli, L., Alberti, A., Huerta-Cepas, J., Ruscheweyh, H.-J., Cuenca, M., et al. (2019) Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179: 1068–1083.e1021. https://doi.org/10.1016/j.cell.2019.10.014.
- Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537–7541. https://doi.org/10.1128/aem.01541-09.
- Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60.
- Segev, E., Wyche, T.P., Kim, K.H., Petersen, J., Ellebrandt, C., Vlamakis, H., et al. (2016) Dynamic metabolic exchange governs a marine algal-bacterial interaction. eLife 5: e17473. https://doi.org/10.7554/eLife.17473.
- Seymour, J.R., Amin, S.A., Raina, J.-B., and Stocker, R. (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol 2: 17065. https://doi.org/10.1038/nmicrobiol.2017.65, https://www.nature.com/articles/nmicrobiol201765#supplementary-information.
- Sher, D., Thompson, J.W., Kashtan, N., Croal, L., and Chisholm, S.W. (2011) Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J 5: 1125–1132. https://doi.org/10.1038/ismej.2011.1 ismej20111 [pii].
- Sun, S., Jones, R.B., and Fodor, A.A. (2020) Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8: 46. https://doi.org/10.1186/s40168-020-00815-y.
- Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., et al. (2015) Structure and function of the global ocean microbiome. Science 348: 1261359. https://doi.org/10.1126/science.1261359.
- Tang, F.H.M., Lenzen, M., McBratney, A., and Maggi, F. (2021) Risk of pesticide pollution at the global scale. Nat Geosci 14: 206–210. https://doi.org/10.1038/s41561-021-00712-5.
- Tetu, S.G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L.D.H., Moore, L.R., and Paulsen, I.T. (2019) Plastic leachates impair growth and oxygen production in Prochlorococcus, the ocean's most abundant photosynthetic bacteria. Commun Biol 2: 184. https://doi.org/10.1038/s42003-019-0410-x.
- Thingstad, T.F., Krom, M.D., Mantoura, R.F.C., Flaten, G.A.F., Groom, S., Herut, B., et al. (2005) Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science 309: 1068–1071. https://doi.org/10.1126/science.1112632.
- Thompson, L.R., Williams, G.J., Haroon, M.F., Shibl, A., Larsen, P., Shorenstein, J., et al. (2016) Metagenomic covariation along densely sampled environmental gradients in the Red Sea. ISME J 11: 138–151. https://doi.org/10.1038/ismej.2016.99.
- Turner, B.L., Papházy, M.J., Haygarth, P.M., and McKelvie, I.D. (2002) Inositol phosphates in the environment. Philos Trans R Soc London, Ser B, Biol Sci 357: 449–469. https://doi.org/10.1098/rstb.2001.0837.
- Vellend, M., Srivastava, D.S., Anderson, K.M., Brown, C.D., Jankowski, J.E., Kleynhans, E.J., et al. (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123: 1420–1430. https://doi.org/10.1111/oik.01493.
- Ward, C.S., Yung, C.-M., Davis, K.M., Blinebry, S.K., Williams, T.C., Johnson, Z.I., and Hunt, D.E. (2017) Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J 11: 1412–1422. https://doi.org/10.1038/ismej.2017.4.
- Yung, C.-M., Ward, C.S., Davis, K.M., Johnson, Z.I., and Hunt, D.E. (2016) Insensitivity of diverse and temporally variable particle-associated microbial communities to bulk seawater environmental parameters. Appl Environ Microbiol 82: 3431–3437. https://doi.org/10.1128/aem.00395-16.