Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion
Corresponding Author
Stefan Dyksma
Faculty of Technology, Microbiology – Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
For correspondence. E-mail [email protected]; Tel. +49 4921 807 1483; Fax. +49 4921 807 1000.Search for more papers by this authorClaudia Gallert
Faculty of Technology, Microbiology – Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
Search for more papers by this authorCorresponding Author
Stefan Dyksma
Faculty of Technology, Microbiology – Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
For correspondence. E-mail [email protected]; Tel. +49 4921 807 1483; Fax. +49 4921 807 1000.Search for more papers by this authorClaudia Gallert
Faculty of Technology, Microbiology – Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
Search for more papers by this authorSummary
Propionate is an important intermediate in the anaerobic mineralization of organic matter. In methanogenic environments, its degradation relies on syntrophic associations between syntrophic propionate-oxidizing bacteria (SPOB) and Archaea. However, only 10 isolated species have been identified as SPOB so far. We report syntrophic propionate oxidation in thermophilic enrichments of Candidatus Syntrophosphaera thermopropionivorans, a novel representative of the candidate phylum Cloacimonetes. In enrichment culture, methane was produced from propionate, while Ca. S. thermopropionivorans contributed 63% to total bacterial cells. The draft genome of Ca. S. thermopropionivorans encodes genes for propionate oxidation via methymalonyl-CoA. Phylogenetically, Ca. S. thermopropionivorans affiliates with the uncultured Cloacimonadaceae W5 and is more distantly related (86.4% 16S rRNA gene identity) to Ca. Cloacimonas acidaminovorans. Although Ca. S. thermopropionivorans was enriched from a thermophilic biogas reactor, Ca. Syntrophosphaera was in particular associated with mesophilic anaerobic digestion systems. 16S rRNA gene amplicon sequencng and a novel genus-specific quantitative PCR assay consistently identified Ca. Syntrophosphaera/Cloacimonadaceae W5 in 9 of 12 tested full-scale biogas reactors thereby outnumbering other SPOB such as Pelotomaculum, Smithella and Syntrophobacter. Taken together the ubiquity and abundance of Ca. Syntrophosphaera, those SPOB might be key players for syntrophic propionate metabolism that have been overlooked before.
Conflict of interest
We declare no conflict of interest
Supporting Information
Filename | Description |
---|---|
emi412759-sup-0001-supinfo.docxWord 2007 document , 42.2 KB | Appendix S1: Supporting Information |
emi412759-sup-0002-AppendixS1.xlsxExcel 2007 spreadsheet , 11.9 KB | Appendix S2: Supporting Information |
emi412759-sup-0003-FigureS1.pdfPDF document, 107.3 KB | Supplementary Fig. S1. Relative abundance of 16S rRNA gene fragments in the initial sample (inoculum, PFL1 T0) and after 4 month of enrichment with propionate as substrate. The enrichment was performed in duplicates (ENR1, ENR1b replicate). For sample ENR1 all 16S rRNA gene fragments extracted from the metagenome (meta) have been used for taxonomic assignment. PFL1 T0 and ENR1b replicate were only analysed by PCR-based amplicon sequencing (iTags). |
emi412759-sup-0004-FigureS2.pdfPDF document, 166.9 KB | Supplementary Fig. S2. Simplified scheme of carbon and energy metabolism in Ca. Syntrophosphaera thermopropionivorans reconstructed from the draft genome. Genes of the methylmalony-CoA pathway and lysine fermentation pathway that were lacking in the genome assembly are indicated (see also Supplementary Information S1). Fdh, formate dehydrogenase; Hyd, electron confurcating hydrogenase; Pil, type IV pili; Rnf, ferredoxin:NAD+ oxidoreductase; SDH, succinate dehydrogenase. |
emi412759-sup-0005-FigureS3.pdfPDF document, 81.4 KB | Supplementary Fig. S3. Position of aromatic amino acids within pilus assembly proteins of selected conductive (e-pili) and non-conductive pili. Extracellular electron transfer or electrical conductance has been experimentally confirmed for the e-pili (Vargas et al., 2013; Alauzet and Jumas-Bilak, 2014; Walker et al., 2018). |
emi412759-sup-0006-FigureS4.pdfPDF document, 138.3 KB | Supplementary Fig. S4. Relative abundance of 16S rRNA amplicon sequences affiliating with Archaea. The highest classification rank of groups that contributed >1% to all archaeal 16S rRNA sequences in at least one sample is depicted (SILVA SSU Ref NR r132). The sum of shown percentages is displayed in parentheses at the bottom. BW, biowaste; WWT, wastewater treatment plant; MAN, manure; MS maize silage; ls, lab-scale reactor; PFL, plug flow reactor; CSTR, continuous stirred tank reactor. |
emi412759-sup-0007-FigureS5.pdfPDF document, 77.6 KB | Supplementary Fig. S5. SPOB cell numbers per ml reactor content estimated by quantitative PCR. |
emi412759-sup-0008-Tables.docxWord 2007 document , 20.9 KB |
Supplementary Table S1. Number of 16S rRNA amplicon sequences kept after quality trimming for phylogenetic classification using SILVA NGS pipeline (Quast et al., 2013). Supplementary Table S2. Primer specificity tested with selected cultures. Supplementary Table S3. Overview of qPCR primer used in this study. In silico primer specificity was evaluated using TestPrime against the SILVA SSU database Ref NR r132. Specificity was also determined by PCR amplicon sequencing. Supplementary Table S4. Percentages of syntrophic propionate-oxidizing bacteria determined by quantitative PCR and their relative abundance of 16S rRNA gene amplicons (iTags). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Adhikari, R.Y., Malvankar, N.S., Tuominen, M.T., and Lovley, D.R. (2016) Conductivity of individual Geobacter pili. RSC Adv 6: 8354–8357.
- Amani, T., Nosrati, M., Mousavi, S.M., and Kermanshahi, R.K. (2011) Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int J Environ Sci Technol 8: 83–96.
- Ariesyady, H.D., Ito, T., and Okabe, S. (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41: 1554–1568.
- Boone, D.R., and Bryant, M.P. (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40: 626–632.
- Chen, S., Liu, X., and Dong, X. (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55: 1319–1324.
- Chouari, R., Paslier, D.L., Dauga, C., Daegelen, P., Weissenbach, J., and Sghir, A. (2005) Novel major bacterial candidate division within a municipal anaerobic sludge digester. Appl Environ Microbiol 71: 2145–2153.
- de Bok, F.A.M., Harmsen, H.J.M., Plugge, C.M., de Vries, M.C., Akkermans, A.D.L., de Vos, W.M., and Stams, A.J.M. (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55: 1697–1703.
- de Bok, F.A.M., Plugge, C.M., and Stams, A.J.M. (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38: 1368–1375.
- de Bok, F.A.M., Stams, A.J.M., Dijkema, C., and Boone, D.R. (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67: 1800–1804.
- Derakshani, M., Lukow, T., and Liesack, W. (2001) Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl Environ Microbiol 67: 623–631.
- Elshahed, M.S., Youssef, N.H., Luo, Q., Najar, F.Z., Roe, B.A., Sisk, T.M., et al. (2007) Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone spring, Oklahoma. Appl Environ Microbiol 73: 4707–4716.
- Gallert, C., and Winter, J. (2008) Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester. Bioresour Technol 99: 170–178.
- Glissmann, K., and Conrad, R. (2000) Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. FEMS Microbiol Ecol 31: 117–126.
- Harmsen, H.J.M., Van Kuijk, B.L.M., Plugge, C.M., Akkermans, A.D.L., De Vos, W.M., and Stams, A.J.M. (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Evol Microbiol 48: 1383–1387.
- Hirschler-Réa, A., Cravo-Laureau, C., Casalot, L., and Matheron, R. (2012) Methanogenic octadecene degradation by syntrophic enrichment culture from brackish sediments. Curr Microbiol 65: 561–567.
- Imachi, H., Sakai, S., Ohashi, A., Harada, H., Hanada, S., Kamagata, Y., and Sekiguchi, Y. (2007) Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57: 1487–1492.
- Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A., and Harada, H. (2002) Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52: 1729–1735.
- Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A., and Harada, H. (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66: 3608–3615.
- Ito, T., Yoshiguchi, K., Ariesyady, H.D., and Okabe, S. (2012) Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresour Technol 123: 599–607.
- Kirkegaard, R.H., McIlroy, S.J., Kristensen, J.M., Nierychlo, M., Karst, S.M., Dueholm, M.S., et al. (2017) The impact of immigration on microbial community composition in full-scale anaerobic digesters. Sci Rep 7: 9343.
- Krakat, N., Schmidt, S., and Scherer, P. (2011) Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol 102: 5692–5701.
- Kreimeyer, A., Perret, A., Lechaplais, C., Vallenet, D., Médigue, C., Salanoubat, M., and Weissenbach, J. (2007) Identification of the last unknown genes in the fermentation pathway of lysine. J Biol Chem 282: 7191–7197.
- Li, C., Mörtelmaier, C., Winter, J., and Gallert, C. (2014) Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion. Bioresour Technol 168: 23–32.
- Li, J., Ban, Q., Zhang, L., and Jha, A.K. (2012) Syntrophic propionate degradation in anaerobic digestion: a review. ResearchGate 14: 843–850.
- Liu, F., Rotaru, A.-E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., and Lovley, D.R. (2015) Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol 17: 648–655.
- Liu, Y., Balkwill, D.L., Aldrich, H.C., Drake, G.R., and Boone, D.R. (1999) Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int J Syst Evol Microbiol 49: 545–556.
- Mathai, P.P., Zitomer, D.H., and Maki, J.S. (2015) Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments. Microbiology 161: 1189–1197.
- Melville, S., and Craig, L. (2013) Type IV pili in gram-positive bacteria. Microbiol Mol Biol Rev 77: 323–341.
- Moertelmaier, C., Li, C., Winter, J., and Gallert, C. (2014) Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision. Bioresour Technol 166: 479–484.
- Mosbæk, F., Kjeldal, H., Mulat, D.G., Albertsen, M., Ward, A.J., Feilberg, A., and Nielsen, J.L. (2016) Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME J 10: 2405–2418.
- Müller, N., Worm, P., Schink, B., Stams, A.J.M., and Plugge, C.M. (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2: 489–499.
- Narihiro, T., Nobu, M.K., Kim, N.-K., Kamagata, Y., and Liu, W.-T. (2014) The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. Environ Microbiol 17: 1707–1720.
- Narihiro, T., Terada, T., Ohashi, A., Kamagata, Y., Nakamura, K., and Sekiguchi, Y. (2012) Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res 46: 2167–2175.
- Nelson, M.C., Morrison, M., and Yu, Z. (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102: 3730–3739.
- Nilsen, R.K., Torsvik, T., and Lien, T. (1996) Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Evol Microbiol 46: 397–402.
- Nobu, M.K., Dodsworth, J.A., Murugapiran, S.K., Rinke, C., Gies, E.A., Webster, G., et al. (2016) Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 10: 273–286.
- Nobu, M.K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S.G., Woyke, T., and Liu, W.-T. (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 9: 1710–1722.
- Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25: 1043–1055.
- Pelletier, E., Kreimeyer, A., Bocs, S., Rouy, Z., Gyapay, G., Chouari, R., et al. (2008) “Candidatus Cloacamonas Acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190: 2572–2579.
- Plugge, C.M., Balk, M., and Stams, A.J.M. (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52: 391–399.
- Plugge, C.M., Dijkema, C., and Stams, A.J.M. (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110: 71–76.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: D590–D596.
- Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 1098–1101.
- Richter, M., and Rosselló-Móra, R. (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106: 19126–19131.
- Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.-F., et al. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431–437.
- Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., et al. (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3: 700–714.
- Rosenberg, H., Gerdes, R.G., and Chegwidden, K. (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131: 505–511.
- Sasaki, K., Morita, M., Sasaki, D., Nagaoka, J., Matsumoto, N., Ohmura, N., and Shinozaki, H. (2011) Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 112: 469–472.
- Schink, B. (1992) Syntrophism among prokaryotes. In The Prokaryotes, 3rd ed. A. Balows, H.G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds). New York: Springer Verlag, pp. 276–299.
- Sieber, J.R., McInerney, M.J., and Gunsalus, R.P. (2012) Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 66: 429–452.
- Sieber, J.R., Sims, D.R., Han, C., Kim, E., Lykidis, A., Lapidus, A.L., et al. (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12: 2289–2301.
- Stams, A.J.M., Grolle, K.C.F., Frijters, C.T.M., and Lier, J.B.V. (1992) Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or Methanobacterium thermoformicicum. Appl Environ Microbiol 58: 346–352.
- Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., and Lovley, D.R. (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330: 1413–1415.
- Tang, Y.-Q., Shigematsu, T., Morimura, S., and Kida, K. (2007) Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Appl Microbiol Biotechnol 75: 451–465.
- Thauer, R.K., Jungermann, K., and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180.
- van Veen, H.W. (1997) Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72: 299–315.
- Vargas, M., Malvankar, N.S., Tremblay, P.-L., Leang, C., Smith, J.A., Patel, P., et al. (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4: e00105–e00113.
- Vershinina, O.A., and Znamenskaya, L.V. (2002) The pho regulons of bacteria. Microbiology 71: 497–511.
- Walker, D.J., Adhikari, R.Y., Holmes, D.E., Ward, J.E., Woodard, T.L., Nevin, K.P., and Lovley, D.R. (2018) Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J 12: 48–58.
- Wallrabenstein, C., Hauschild, E., and Schink, B. (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164: 346–352.
- Walsh, D.A., Zaikova, E., Howes, C.G., Song, Y.C., Wright, J.J., Tringe, S.G., et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326: 578–582.
- Wang, L., Zhou, Q., and Li, F.T. (2006) Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass Bioenergy 30: 177–182.
- Wang, T., Zhang, D., Dai, L., Dong, B., and Dai, X. (2018) Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge. Environ Sci Technol 52: 7160–7169.
- Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.-H., et al. (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12: 635–645.
- Yoon, S.-H., Ha, S.-M., Lim, J., Kwon, S., and Chun, J. (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281–1286.
- Ziganshin, A.M., Liebetrau, J., Pröter, J., and Kleinsteuber, S. (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97: 5161–5174.