Microevolution of the major common Pseudomonas aeruginosa clones C and PA14 in cystic fibrosis lungs
Corresponding Author
Nina Cramer
These authors contributed equally.
E-mail [email protected]; Tel. (+49) 511 5326721; Fax (+49) 511 5326723.Search for more papers by this authorKristie Wrasman
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorMario Schmidt
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorColin F. Davenport
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorBurkhard Tümmler
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorCorresponding Author
Nina Cramer
These authors contributed equally.
E-mail [email protected]; Tel. (+49) 511 5326721; Fax (+49) 511 5326723.Search for more papers by this authorKristie Wrasman
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorMario Schmidt
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorColin F. Davenport
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorBurkhard Tümmler
Klinische Forschergruppe, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
Search for more papers by this authorSummary
Clones C and PA14 are the worldwide most abundant clonal complexes in the Pseudomonas aeruginosa population. The microevolution of clones C and PA14 was investigated in serial cystic fibrosis (CF) airway isolates collected over 20 years since the onset of colonization. Intraclonal evolution in CF lungs was resolved by genome sequencing of first, intermediate and late isolates and subsequent multimarker SNP genotyping of the whole strain panel. Mapping of sequence reads onto the P. aeruginosa PA14 reference genome unravelled an intraclonal and interclonal sequence diversity of 0.0035% and 0.68% respectively. Clone PA14 diversified into three branches in the patient's lungs, and the PA14 population acquired 15 nucleotide substitutions and a large deletion during the observation period. The clone C genome remained invariant during the first 3 years in CF lungs; however, 15 years later 947 transitions and 12 transversions were detected in a clone C mutL mutant strain. Key mutations occurred in retS, RNA polymerase, multidrug transporter, virulence and denitrification genes. Late clone C and PA14 persistors in the CF lungs were compromised in growth and cytotoxicity, but their mutation frequency was normal even in mutL mutant clades.
Supporting Information
Table S1. (a) SNPs specific for a single RN isolate; (b) intragenic NN80-spec. SNPs; (c) intergenic SNPs specific for isolate NN80.
Table S2. Sequencing data for putative strain specific SNP positions selected for wet lab validation.
Table S3. Stop-mutations – summary.
Table S4. Crystal violet assay of the adherence of serial P. aeruginosa RN isolates to polystyrol (O′Toole and Kolter, 1998).
Table S5. Antimicrobial susceptibility of sequential P. aeruginosa MexA mutants and RN controls.
Table S6. Cytotoxicity assays: LDH release from CHO cells.
Filename | Description |
---|---|
EMI_2483_sm_tS1a.xls27 KB | Supporting info item |
EMI_2483_sm_tS1b.xls153.5 KB | Supporting info item |
EMI_2483_sm_tS1c.xls35 KB | Supporting info item |
EMI_2483_sm_TableS2.xls28 KB | Supporting info item |
EMI_2483_sm_TableS3.doc23 KB | Supporting info item |
EMI_2483_sm_tS4.xls32 KB | Supporting info item |
EMI_2483_sm_tS5.xls25 KB | Supporting info item |
EMI_2483_sm_tS6.xls24 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Alm, R.A., and Mattick, J.S. (1996) Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J Bacteriol 178: 3809–3817.
- F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidmann, J.A. Smith, and K. Struhl (eds). (1994) Current Protocols in Molecular Biology. New York, NY, USA: Wiley.
- Bragonzi, A., Paroni, M., Nonis, A., Cramer, N., Montanari, S., Rejman, J., et al. (2009) Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med 180: 138–145.
- Burns, J.L., Gibson, R.L., McNamara, S., Yim, D., Emerson, J., Rosenfeld, M., et al. (2001) Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183: 444–452.
- Byrd, M.S., Sadovskaya, I., Vinogradov, E., Lu, H., Sprinkle, A.B., Richardson, S.H., et al. (2009) Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73: 622–638.
- Clinical and Laboratory Standards Institute (2007) M100-S17. Performance Standards for Antimicrobial Susceptibility Testing; 17th Informational Supplement. Wayne, PA, USA: Clinical and Laboratory Standards Institute.
- Cowell, B.A., Twining, S.S., Hobden, J.A., Kwong, M.S., and Fleiszig, S.M. (2003) Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology 149: 2291–2299.
- Dayhoff, M.O. (1978) Atlas of Protein Sequence and Structure, Observed Frequencies of Amino Acid Replacements between Closely Related Proteins, 5, Suppl. 3. Washington DC, USA: National Biomedical Research foundation.
- Freeman, D.J., Falkiner, F.R., and Keane, C.T. (1989) New methods for detecting slime production by coagulase negative Staphylococci. J Clin Pathol 42: 872–874.
- Gómez, M.I., and Prince, A. (2007) Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7: 244–251.
- Govan, J.R., and Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60: 539–574.
- Grimes, E., Koob, M., and Szybalski, W. (1990) Achilles' heel cleavage: creation of rare restriction sites in lambda phage genomes and evaluation of additional operators, repressors and restriction/modification systems. Gene 90: 1–7.
- Harfe, B.D., and Jinks-Robertson, S. (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34: 359–399.
- Hoboth, C., Hoffmann, R., Eichner, A., Henke, C., Schmoldt, S., Imhof, A., et al. (2009) Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200: 118–130.
- Huse, H.K., Kwon, T., Zlosnik, J.E., Speert, D.P., Marcotte, E.M., and Whiteley, M. (2010) Parallel evolution in Pseudomonas aeruginosa over 39 000 generations in vivo. MBio 1: 1–4.
- Jelsbak, L., Johansen, H.K., Frost, A.L., Thøgersen, R., Thomsen, L.E., Ciofu, O., et al. (2007) Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75: 2214–2224.
- Klockgether, J., Würdemann, D., Reva, O., Wiehlmann, L., and Tümmler, B. (2007) Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 189: 2443–2459.
- Klockgether, J., Würdemann, D., Wiehlmann, L., Binnewies, T.T., Ussery, D.W., and Tümmler, B. (2008a) Genome diversity of Pseudomonas aeruginosa. In Pseudomonas. Genomics and Molecular Biology. P. Cornelis (ed.). Norfolk, UK: Caister Academic Press, pp. 19–42.
- Klockgether, J., Würdemann, D., Wiehlmann, L., and Tümmler, B. (2008b) Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102. Microbiology 154: 1599–1604.
- Klockgether, J., Munder, A., Neugebauer, J., Davenport, C.F., Stanke, F., Larbig, K.D., et al. (2010) Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 192: 1113–1121.
- Lee, D.G., Urbach, J.M., Wu, G., Liberati, N.T., Feinbaum, R.L., Miyata, S., et al. (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7: R90.
- Lee, V.T., Smith, R.S., Tümmler, B., and Lory, S. (2005) Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun 73: 1695–1705.
- Mathee, K., Narasimhan, G., Valdes, C., Qiu, X., Matewish, J.M., Koehrsen, M., et al. (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105: 3100–3105.
- Mena, A., Smith, E.E., Burns, J.L., Speert, D.P., Moskowitz, S.M., Perez, J.L., and Oliver, A. (2008) Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190: 7910–7917.
- Mulcahy, L.R., Burns, J.L., Lory, S., and Lewis, K. (2010) Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192: 6191–6199.
- O'Toole, G.A., and Kolter, R. (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304.
- Oliver, A., and Mena, A. (2010) Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect 16: 798–808.
- Oliver, A., Cantón, R., Campo, P., Baquero, F., and Blázquez, J. (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–1254.
- Oliver, A., Baquero, F., and Blázquez, J. (2002) The mismatch repair system (mutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43: 1641–1650.
- Polosina, Y.Y., and Cupples, C.G. (2010) MutL: conducting the cell's response to mismatched and misaligned DNA. Bioessays 32: 51–59.
- Römling, U., Grothues, D., Koopmann, U., Jahnke, B., Greipel, J., and Tümmler, B. (1992) Pulsed-field gel electrophoresis analysis of a Pseudomonas aeruginosa pathovar. Electrophoresis 13: 646–648.
- Römling, U., Wingender, J., Müller, H., and Tümmler, B. (1994) A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60: 1734–1738.
- Römling, U., Schmidt, K.D., and Tümmler, B. (1997) Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271: 386–404.
- Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., and Brudno, M. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386.
- Sadikot, R.T., Blackwell, T.S., Christman, J.W., and Prince, A.S. (2005) Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171: 1209–1223.
- Schaaper, R.M. (1993) Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268: 23762–23765.
- Schwyn, B., and Neilands, J.B. (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47–56.
- Smith, E.E., Sims, E.H., Spencer, D.H., Kaul, R., and Olson, M.V. (2005) Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 187: 2138–2147.
- Smith, E.E., Buckley, D.G., Wu, Z., Saenphimmachak, C., Hoffman, L.R., D'Argenio, D.A., et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103: 8487–8492.
-
Tümmler, B. (2006) Clonal variations in Pseudomonas aeruginosa. In
Pseudomonas, Vol. 4. J.L. Ramos, and R.C. Levesque (eds). Berlin, Germany – Heidelberg, Germany – New York, NY, USA: Springer, pp.
35–68.
10.1007/0-387-28881-3_2 Google Scholar
- Tümmler, B., and Kiewitz, C. (1999) Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 5: 351–358.
- Whitchurch, C.B., Beatson, S.A., Comolli, J.C., Jakobsen, T., Sargent, J.L., Bertrand, J.J., et al. (2005) Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol 55: 1357–1378.
- Wiehlmann, L., Wagner, G., Cramer, N., Siebert, B., Gudowius, P., Morales, G., et al. (2007) Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 104: 8101–8106.
- Winsor, G.L., Van Rossum, T., Lo, R., Khaira, B., Whiteside, M.D., Hancock, R.E., and Brinkman, F.S. (2009) Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37 (Database issue): 483–488.